
Journal of Geometry and Physics 47 (2003) 43–65

Chekanov–Eliashberg invariant of Legendrian knots:
existence of augmentations

Dmitry Fuchs
Department of Mathematics, University of California, One Shields Ave., Davis, CA 95616, USA

Received 24 October 2000

Abstract

An explicit and easy-to-check condition sufficient for the existence of an augmentation in the
Chekanov–Eliashberg algebra of a Legendrian knot is given in terms of the front diagram. Many new
examples of Legendrian knots distinguishable by the linearized version of the Chekanov–Eliashberg
invariant are provided.
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1. Introduction

In this paper, we consider Legendrian knots in the standard 3-dimensional contact space.
The main goal of this work is to make the new invariant of these knots, recently constructed
by Chekanov[3] and Eliashberg[4], work in a more effective way.

A working version of the Chekanov–Eliashberg invariant is based on a linearization of
their complex by means of anaugmentationas defined by Chekanov[3]. If an augmentation
exists, then there arises a chance, almost without computations, to distinguish Legendrian
knots, indistinguishable by more traditional invariants; it should be added, that, so far, it
is not known whether the non-linearized version of this invariant actually distinguishes
Legendrian knots indistinguishable by the linearized version.

Technically, the main result of this work is an easy-to-check sufficient condition on
the existence of an augmentation. As an application, we will construct new examples of
Legendrian non-isotopic Legendrian knots.
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1.1. Knots

A Legendrian knot in the standard 3-dimensional contact space is a smooth, non-
self-intersecting, closed curve inR3 with zero restriction of the standard contact form
y dx − dz. A Legendrian isotopy is an isotopy via Legendrian knots. Any topological iso-
topy class of knots contains infinitely many Legendrian isotopy classes of Legendrian knots,
so the Legendrian isotopy classification of Legendrian knots is finer than the topological
isotopy classification of knots.

1.2. Diagrams

There exist two diagrammatic presentations of Legendrian knots: byxz-diagrams, or
front diagrams, and byxy-diagrams. A genericxz-projection of a Legendrian knot is a
closed smooth curve with cusps and transverse double crossings, without other singularities
(in particular, without self-tangencies), and without vertical tangents. Thexz-projection
determines a Legendrian knot uniquely: the missingy-coordinate is the slope of the curve.
A genericxy-projection of a Legendrian knot is a smooth curve with transverse double
crossings, without other singularities, satisfying the following area conditions: (1) the total
area bounded by the curve is 0, (2) each of the two pieces, into which the curve is cut by
any crossing, bounds a non-zero area. Thexy-projection determines a Legendrian knot up
to a translation parallel to thez-axis: the difference between thez-coordinates of two points
of the knot is equal to the integral ofy dx over the segment of thexy-diagram between the
projections of these two points.

It should be noted that the non-local area conditions makexy-diagrams much less con-
venient than front diagrams. In particular, no Reidemeister-like description of admissible
Legendrian moves exists forxy-diagrams. (For front diagrams such a description is well
known[15]; it can also be found in many works in the bibliography[16,12,8], etc.)

1.3. Classical invariants

There are two classical integral invariants of Legendrian knots which may distinguish
Legendrian isotopy classes within a topological isotopy class: the Maslov (or rotation)
number and the Thurston–Bennequin number[1]; the first is defined for oriented Legendrian
knots and changes sign when the orientation is reversed, the second does not depend on
the orientation. These numbers are determined by the (oriented in the case of the Maslov
invariant) Legendrian isotopy type and can be easily determined from either thexy- or
xz-diagram. In terms of anxy-diagram, the Maslov number is the rotation number of the
curve, while the Thurston–Bennequin number is the writhe (see[13]). For an oriented
xz-diagram, we denote byp the number of crossings with the same horizontal directions
of the strands (recall, that vertical tangents are not allowed), bym the number of crossings
with the opposite horizontal directions of the strands, byc the total number of cusps (the
numbersp,m, c do not depend on the orientation), byu the number of upward cusps (i.e.,
the lower strand is directed to the cusp, and the upper strand is directed from the cusp),
and byd the number of downward cusps (thus,c = u + d). Then the Maslov number is
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1
2(d − u), and the Thurston–Bennequin number isp−m− 1

2c (see[1,16,12], etc.). we use
the notationsτβ andµ for the Thurston–Bennequin and Maslov numbers below.

1.4. Values of Thurston–Bennequin numbers

It is easy to lower the Thurston–Bennequin number of a Legendrian knot within a topo-
logical isotopy class: just insert a Z-shaped zigzag (composed of two cusps) anyplace.
It is more difficult to raise this number. Actually, at least three upper estimates of the
Thurston–Bennequin number within a topological isotopy class are known. LetΓ be a
Legendrian knot,S be a Seifert surface bounded byΓ , e(Γ ) be the highest degree ofα in
the HOMFLY polynomialPΓ (α, z) of the knotΓ , andf(Γ ) be the highest degree ofa in
the Kauffman polynomialFΓ (a, z) of Γ (we use the notation of[13]).

Theorem 1.1 (Bennequin[1]). τβ(Γ ) + |µ(Γ )| ≤ −χ(S) (whereχ is the Euler charac-
teristic).

Theorem 1.2 (Fuchs and Tabachnikov[12]). τβ(Γ )+ |µ(Γ )| < −e(Γ ).

Theorem 1.3 (Fuchs and Tabachnikov[12], Chmutov and Goryunov[2] and Tabachnikov
[17]). τβ(Γ ) < −f(Γ ).

None of these results gives an exact estimate for eitherτβ(Γ ) or τβ(Γ ) + |µ(Γ )| (see
[7,9,11,12]), and no one of them implies any of the others (see[11]).

1.5. Sufficiency of classical invariants

For some topological isotopy classes of knots, it is known that any two oriented Leg-
endrian knots of this class having equal Thurston–Bennequin and Maslov numbers are
oriented Legendrian isotopic. It is proved for topological unknots by Eliashberg and Fraser
[5] and for torus knots by Etnyre and Honda[10].

1.6. Chekanov–Eliashberg invariants

It is not true, however, that topologically isotopic oriented Legendrian knots with equal
Thurston–Bennequin and Maslov numbers are always Legendrian isotopic. A new invari-
ant that may distinguish such knots was constructed in 1997 independently by Chekanov
[3] and Eliashberg[4]. (Eliashberg’s construction was based on a contact version of Floer
cohomology, worked out jointly with Hofer. A detailed presentation of this version can be
found, among other things, in a recent paper by Eliashberg et al.[6].) Both Chekanov and
Eliashberg were able to exhibit an (actually, the same) example of a pair of topologically
isotopic, Legendrian non-isotopic oriented Legendrian knots, which were not distinguish-
able by the previously known invariants. We will not discuss the true origin of this invariant,
but rather recall its construction, as given in the original works of the authors.

LetΓ be an oriented Legendrian knot presented by a genericxy-diagram. At any crossing
x, the two strands form four angles, of which we call two positive and two negative: the
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positive angles are bounded on the right by the upper strand and on the left by the lower
strand. Forn ≥ 0, we fix a convex planar domainPn, bounded by a piecewise smooth curve
Πn of n+ 1 vertices, which are denoted in a counterclockwise direction asu0, u1, . . . , un;
whenn ≥ 2, Pn may be a regular(n + 1)-gon. We consider orientation preserving im-
mersionsf of Pn into thexy-plane, which mapΠn into the diagram ofΓ in such a way
that eachui is mapped onto a crossing. Additionally, we suppose that a neighborhood of
u0 is mapped onto a positive angle, while the neighborhoods ofu1, . . . , un are mapped
onto negative angles. For anyn, the set of isotopy classes of such immersionsf with
f(u0) = x is denoted as Immn(x). For anyx, ∪∞

n=0 Immn(x) is finite (because, for any
f ∈ Immn(x), h(x) − ∑n

i=1h(f(ui)) > 0, whereh(x) is the absolute value of the differ-
ence of thez-coordinates of the points above the crossingx). Let A denote the differential
Z2-algebra, which is defined as the free associative algebra generated by the crossings of the
xy-diagram ofΓ , whose differentiald : A → A satisfies the product rule and the formula
d(x) = ∑∞

n=0
∑
f∈Immn(x)f(u1) · · · f(un).

Theorem 1.4 (Chekanov[3] and Eliashberg[4]). If H = Kerd/Im d, thendim H is a
Legendrian isotopy invariant ofΓ .

1.7. Gradings

It is not known whetherTheorem 1.4alone actually provides new invariants of Legendrian
isotopy classes. However, Chekanov’s and Eliashberg’s invariant has a graded version,
which is known to be new. In order to introduce a grading, we need to fix an orientation
of Γ , although the degrees degx, defined below, do not depend on this orientation. For
a pointx ∈ Γ , letΦ(x) denote the angle (measured counterclockwise) from the positive
direction of thex-axis to thexy-projection of the positive tangent toΓ at x. The function
Φ is multivalued;Φ(x) is defined up to the addition of integral multiples of 2π. If µ = 0,
thenΦ has a continuous branchϕ : Γ → R. If µ �= 0, thenΦ has a continuous branch
ϕ : Γ → R/2π|µ|Z. Let x be a crossing of thexy-diagram ofΓ andx1, x2 ∈ Γ be the two
points abovex. Let α(x) be the measure of the positive angle atx (thus, 0< α(x) < π).
We also suppose thatx1 lies belowx2, i.e., thez-coordinate ofx1 is less than that ofx2.

Proposition 1.5 (Chekanov[3] and Eliashberg[4]). The numberϕ(x1)− ϕ(x2)− α(x) is
an integral multiple ofπ.

Definition. deg(x) = (1/π)(ϕ(x1)− ϕ(x2)− α(x)).

Obviously,

deg(x) ∈
{

Z, if µ = 0,

Z2|µ|, if µ �= 0.

Using this definition, we introduce aZ- or a Z2|µ|-grading inA : deg(x1 · · · xn) =
deg(x1)+ · · · + deg(xn).
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Proposition 1.6 (Chekanov[3] and Eliashberg[4]). The differentiald : A → A is homo-
geneous of degree−1.

Proposition 1.6shows that the cohomologyH is graded:H = ⊕r∈ZHr orH = ⊕r∈Z2|µ|Hr.

Theorem 1.7 (Chekanov[3] and Eliashberg[4]). The dimensionsdim Hr are Legendrian
isotopy invariants ofΓ .

1.8. An alternative approach

A recent preprint by Ng[14] contains a new construction of (aZ-version of) the Chekanov–
Eliashberg algebra in terms of the front diagram. The author considers a free associative
Z-algebra generated by the right cusps and all of the crossings of a genericxz-diagram of
a Legendrian knot. Then, he introduces a differential and proves theorems similar to those
above. In particular, Ng’s paper provides a grading of the algebra (modulo twice the rotation
number): the degree of a cusp is defined as+1; the degrees of crossings are also important
for this paper and will be described below.

1.9. Augmentations

We will need a coarser invariant, constructed by Chekanov.

Definition. An algebra homomorphismε : A → Z2 is calledan augmentation, if ε◦d = 0.
An augmentationε is calledgraded, if ε(a) = 0 for any homogeneousa ∈ A, such that
dega �= 0. An augmentation is calledρ-graded for some divisorρ of 2|µ| if ε(a) = 0
whenever dega �≡ 0 modρ.

Let ε : A → Z2 be an augmentation. LetA0 = Ker ε. Sinced(a) ∈ Ker ε = A0 for
a ∈ A, thend(a1 · · · ak) = ∑k

i=1a1 · · · ai−1d(ai)ai+1 · · · ak ∈ Ak0 for anya1, . . . , ak ∈ A0.
Thus,d(Ak0) ⊂ Ak0. In particular, this gives rise to a mapdε : A0/A2

0 → A0/A2
0 for which

d2
ε = 0. This is a “linearization” of the differentiald.
For a crossingx, we setxε = x + ε(x) ∈ A. Obviously,xε ∈ Ker ε = A0. Moreover, the

correspondencex �→ xε defines an isomorphism between the vector spaceA spanned by
the crossings of thexy-diagram andA0/A2

0. Hence,dε can be regarded as a differential inA.
If the augmentationε is graded, thendε is homogeneous of degree−1, and the homology
Hε = Kerdε/Im dε is Z- or Z2|µ|-graded; in theρ-graded case,Hε is Zρ-graded.

In practice,dε : A → A is calculated as follows. We take the formula ford(a) and
replace all the crossingsx in the polynomial on the right-hand side of the formula byxε.
The resulting polynomial will have zero constant term, sinceε ◦ d = 0. Then, we erase
all monomials of degree> 1; the result will be a linear combination of crossings, which is
dε(a).

Let I be the set of non-negative integers dimHε computed for all possible augmentations
ε : A → Z2, and letIgr be the set of all Poincaré polynomials ofHε computed for all
possible graded orρ-graded augmentationsε : A → Z2.



48 D. Fuchs / Journal of Geometry and Physics 47 (2003) 43–65

Theorem 1.8 (Chekanov[3]). I and Igr are Legendrian isotopy invariants.

1.10. Results

The existence of an augmentation or of a (ρ-) graded augmentation, is by itself a Leg-
endrian isotopy invariant of a Legendrian knot. It is not known whether this invariant is
determined by the topology of the knot plus its classical invariants. (Actually, this seems
likely to me, see the discussion inSection 2.8.) Still, it is important to know whether a
(graded) augmentation exists for a given knot.

Theorems 2.1 and 2.2provide an explicit and easy-to-check sufficient condition for the
existence of a graded augmentation in terms of thexz-diagram. Using these theorems, we
will be able to construct a large quantity of Legendrian knots, for which an augmentation
(or a graded augmentation) exists.

Let Γ andΓ ′ be topologically isotopic oriented Legendrian knots with equal classi-
cal invariants. If the existence of a (ρ-) graded augmentation forΓ and Γ ′ is estab-
lished, then we have a chance to distinguish them without much work. Suppose, e.g.,
that we know the numbers of crossings of each degree for somexy-diagrams ofΓ and
Γ ′. If, say, the diagram ofΓ has at least one crossing of degreek and no crossings
of degreesk ± 1, and the diagram ofΓ ′ has no crossings of degreek, then the corre-
sponding homologiesH must be different in dimensionk, and the knotsΓ andΓ ′ can-
not be Legendrian isotopic. (This simple observation alone is sufficient to distinguish the
knots in the Chekanov–Eliashberg example.) Some similar possibilities are discussed in
Section 2.7.

Proof of Theorems 2.1 and 2.2is contained inSection 3. These proofs are based on
a construction which may be useful for other problems arising in Chekanov–Eliashberg
theory. For a very brief description of the main idea, I can say that for a computation of
Chekanov–Eliashberg invariant it seems preferable to deal with anxy-diagram with as few
crossing as possible. We do the opposite: we transform a diagram in such a way that it gains
enormously many new crossings, the more, the better. However, in this way we achieve
some taming of the differential.

2. Existence of augmentations

2.1. Rulings

Consider anxz-diagram of a Legendrian knot. Obviously, the numbers of left and right
cusps are the same. Aruling of the diagram consists, by definition, of

(a) a 1-1 correspondence between left and right cusps;
(b) two paths within the diagram joining each pair of corresponding cusps.

This correspondence and these paths should satisfy the following conditions:

(1) the paths joining a pair of corresponding cusps are disjoint (which makes one of them
upperand another onelower);
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Fig. 1.

(2) any two paths of the ruling can meet only at the crossings of the diagram.
Conditions (1) and (2) imply:

(3) the paths of the ruling cover the diagram;
(4) no path ever passes through a cusp (in other words, thex-coordinate is monotonic on

each path of the ruling).

Not everyxz-diagram of a Legendrian knot can be ruled; examples of diagrams without
rulings are given inFig. 1. (Any diagram can be made unrullable by adding a Z-shaped
zigzag or a crossing next to a cusp, formed from the two strands of the cusp.) A diagram
can have more than one ruling, e.g., the diagram inFig. 2has at least four different rulings.

In order to visualize a ruling one can shadow the domains between the paths joining
the same pair of cusps; it should be taken into account, however, that these domains may
overlap.

2.2. Normal rulings

From now on, we consider onlyxz-diagrams which satisfy the following additionalgener-
icity condition: no two crossings or cusps have the samex-coordinate.

Consider a ruled (generic)xz-diagram. Leta be a crossing. Then precisely two paths
of the ruling pass througha; let them bep1 andp2. We say thata is a switch, if p1 and
p2 exchange strands ata; in other words,a is a switch, if, in some neighborhood ofa,
excludinga, one of the pathsp1, p2, sayp1, goes above the other one. Sincep1 andp2
share a crossing, they cannot join the same pair of cusps (see Condition (1)). Letq1 andq2
be the paths of the ruling that join the same pairs of cusps as, respectively,p1 andp2. Since

Fig. 2.
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Fig. 3.

our diagram is generic, there are six possible arrangements of the pathsp1, p2, q1, q2 in a
neighborhood of the vertical line passing througha, seeFig. 3.

In cases (1)–(3), we call the switchnormal; in cases (4)–(6), we call the switchabnormal.
A ruling is called normal, if all its switches are normal.

2.3. Existence of augmentations

Theorem 2.1. If the xz-diagram of a Legendrian knot admits a normal ruling, then this
Legendrian knot has an augmentation.

See the proof inSection 3.

2.4. Rulings and gradings

For a crossinga of anxz-diagram, consider a path along the diagram (without switching
strands at crossings) froma back toa, starting along the strand with the bigger slope (in
any direction); there are two such paths. Letd andu be the numbers of downward and
upward cusps on our paths. The residued − umod 2|µ|, whereµ is the Maslov number of
the knot, does not depend on the choice of the path; we call this residue thedegreeof a.
(This definition coincides with that in[14], see 1.8.)

A ruling is called graded, if all the switch crossings have degree 0. It is calledρ-graded,
if the degrees of the switch crossings are divisible byρ. These properties of a ruling do not
depend on the choice of orientation.

2.5. Existence of graded augmentations

Theorem 2.2. If the xz-diagram of a Legendrian knot admits a graded(orρ-graded) normal
ruling, then this Legendrian knot has a graded(or ρ-graded) augmentation.

See the proof inSection 3
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Fig. 4.

2.6. Example 1: doubling of a Legendrian knot

The following construction was shown to me by Yasha Eliashberg in 1997, in connection
with the Chekanov–Eliashberg invariant.

2.6.1. Construction. Thurston–Bennequin and Maslov numbers
Take thexz-diagram of an arbitrary Legendrian knotΓ and shift it slightly down. Then

replace a small fragment of a pair of parallel strands by a “lock”, as shown inFig. 4. The
resulting Legendrian knot will be denoted asΓdb1. A slightly more general construction
uses, instead of a lock, a more complicated insert with 2k+2l+2 cusps, as shown inFig. 5;
herek andl are arbitrary positive numbers. (This insert contains a lock.)

The resulting Legendrian knot is denoted asΓdbl(k, l). Obviously,Γdbl(0,0) = Γdbl, and
if k andl are both even, thenΓdbl(k, l) can be described asΓ ′

dbl for someΓ ′. Also note that
Γdbl(k, l) andΓdbl(k

′, l′) are topologically isotopic if and only ifk + 1 = k′ + l′.
These constructions are illustrated byFig. 6, where the standard Legendrian trefoil (shown

in Fig. 2) plays the role ofΓ .

Proposition 2.3.

µ(Γdbl(kl)) = 0 always, τβ(Γdbl(k, l)) =
{

+1, if k + l is even,

−3, if k + l is odd.

In particular, for anyΓ ,

µ(Γdbl) = 0, τβ(Γdbl) = +1.

Proof. Direct computation. �

2.6.2. Degrees of crossings in the xz-diagram
In thexz-diagram ofΓdbl(k, l), we will distinguish three types of crossings:

(1) two crossings within the lock;
(2) four crossings originating from each crossing ofΓ ;

Fig. 5.
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Fig. 6.

(3) the remaining crossings, one near each cusp ofΓ , and 2k+2l near the lock (but outside
the lock).

Proposition 2.4. All of the crossings of type(3) have degree0. The degrees of crossings of
type(2)do not depend on k or l. Each crossing of type(1)has degree equal to±(µ(Γ)+k−l).
(We orientΓ in such a way that the k cups marked in Fig.5 precede the site of the lock,
while the l cusps succeed this site.)

Proof. Again, this is obvious. Note that the degrees of the four crossings near a cross-
ing a of Γ arer − 1, r, r, r + 1, wherer is the integral degree ofa calculated according
to the procedure described inSection 2.4, using the path avoiding the site of the lock.
In particular, the absolute values of these degrees can never exceed the total number of
crossings ofΓ , or even the maximum of the numbers of upward and downward cusps plus
one. �

2.6.3. Degrees of crossings in the xy-diagram
Thexy-diagram of the knotΓdbl(k, l) consists of two identical copies of thexy-diagram

of Γ (we should slightly perturb one of these copies to make the diagram generic) with the
insert shown inFig. 7(compare with[3] or [8]). The following proposition will be referred
to in Section 2.7(we will be able to avoid it if we use the result of[14]).

Proposition 2.5. The degrees of the crossings a of Fig.7 are±(µ(Γ)+ k− l), the degrees
of the crossings b are all equal to1, the degrees of the crossings c are all equal to0, the
degrees of the crossings outside Fig.7 do not depend on k or l.

Proof. This is obvious from the diagram. Note that outsideFig. 7, there will be two kinds
of crossings: four crossings near each crossing of thexy-diagram ofΓ and some amount of
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Fig. 7.

accidental crossings between the two copies of this diagram. The degrees of the accidental
crossings are 0 or 1 (there is a path from such a crossing back to itself that goes to the lock
and then back along almost the same track; whether the degree is 0 or 1, depends on the
location of the positive angle). The degrees of crossings near a crossing ofΓ are the same
as that of the crossing ofΓ , maybe plus or minus one. �

2.6.4. Existence of augmentation

Theorem 2.6. For anyΓ, k, l, the Legendrian knotΓdbl(k, l) possesses a graded augmen-
tation.

Proof. According toTheorem 2.2, it is sufficient to find a graded normal ruling for the
xz-diagram ofΓdbl(k, l). Such a ruling is presented inFig. 8. Remark: the two cusps of the

Fig. 8.



54 D. Fuchs / Journal of Geometry and Physics 47 (2003) 43–65

lock correspond not to each other, but rather to the two nearest cusps to the left and to the
right of the lock. We choose this correspondence to avoid switches at the crossings within
the lock (because they have non-zero degrees). In our construction, all the switches occur
at a crossing of type (3), all of which have zero degree (Proposition 2.4). Also note that all
the switches of this ruling belong to type (1) ofFig. 3. �

2.7. Distinguishing Legendrian knots

LetΓ1 andΓ2 be two Legendrian knots. Suppose that (1) they are topologically isotopic,
(2) they have equal Thurston–Bennequin and Maslov numbers, (3) they have graded (or
ρ-graded) augmentations. According toTheorem 1.8, if Γ1 andΓ2 are Legendrian isotopic,
then for any graded augmentation ofΓ1, there exists a graded augmentation ofΓ2 such that
the (graded) homologies of the linearized Chekanov–Eliashberg complexes are the same.
Sometimes, we can use this to distinguishΓ1 andΓ2 without knowing the differential in
these complexes. Indeed, letcr be the number of crossings of degreer in thexy-diagram of
Γ1, and letdr be the similar number forΓ2. Then the corresponding linearized complexes
are

C = {· · · → C−1 → C0 → C1 → · · · }, D = {· · · → D−1 → D0 → D1 → · · · }
with dimCr = cr, dimDr = dr, (where dim is the dimension overZ2). As it was noted
in 1.10, the equality of homologies,H(C) = H(D), is impossible, say, if, for somek,
ck �= 0, ck−1 = ck+1 = dk = 0 (which is, actually, sufficient forTheorem 2.8). More
generally, the equalityH(C) = H(D) implies, at least in theZ-graded case, a chain
of Morse-like inequalities, each of which becomes a tool for distinguishing Legendrian
knots.

Proposition 2.7. Let C and D beZ-graded, and letcr = dr = 0 for r < m. For k ≥ m, let
ek = cm − cm+1 − cm+2 + · · · ± ck, fk = dm − dm+1 − dm+2 + · · · ± dk. Then

em ≥ fm+1, em+1 ≤ fm+2, em+2 ≥ fm+3, . . .

fm ≥ em+1, fm+1 ≤ em+2, fm+2 ≥ em+3, · · · .

The proof has been well known for at least 75 years.

Theorem 2.8. For any Legendrian knotΓ , there exists an integer N with the following prop-
erty. If for some integersk, l, k′, l′, the Legendrian knotsΓdbl(k, l),Γdbl(k

′l′) are Legendrian
isotopic, and|k − l| > N, then eitherk = k′, l = l′, or k = l′ − µ(Γ), l = k′ + µ(Γ).

The proof is based not onProposition 2.7, but rather on the trivial remarks before it.
Since our knots are Legendrian isotopic, they are also topologically isotopic, and hence
k+ l = k′ + l′ (see the remark inSection 2.6.1). According toTheorem 2.6, both knots have
graded augmentations. The linearized complex forΓdbl(k, l) has non-zero components of
degrees±(µ(Γ)+k−l), and, ifN is big enough, at least one of these components is isolated
(the two neighboring components are trivial). Hence, the complex forΓdbl(k

′, l′) should also
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have a component of this degree. This is possible only ifµ(Γ)+ k− l = ±(µ(Γ)+ l′ − l′),
which, in combination withk + l = k′ + l′, implies the statement of the theorem.

Remarks.

1. Since for anym, all Legendrian knotsΓdbl(k, l) with k + l = m are topologically
isotopic and have the same classical invariants,Theorem 2.8produces a lot of exam-
ples of topologically isotopic Legendrian knots, not distinguishable by the classical
invariants.

2. The simplest of these knots, corresponding toΓ with the lens-likexz-diagram (two cusps
and no crossings) andk + l = 4, is Eliashberg’s and Chekanov’s initial example. The
same example with arbitraryk andl was considered in the later version of[3] (see also
[8]).

3. We do not discuss here how bigN should be (and whether it is needed at all). From
the remarks afterPropositions 2.4 and 2.5, it is not hard to deduce that anyN greater
than both the number of downward cusps and the number of upwards cusps (in the
xz-diagram) will work. A little additional work allows us to replace this “greater than”
by “greater than or equal to”.

4. Theorem 2.2and Proposition 2.7can probably be used for constructing many more
examples.

2.8. Example 2: mirror torus knots. A conjecture

Let p > q, where GCD(p, q) = 1, and letM(p, q) be the topological isotopy class of
the mirror torus knot that windsp times in the direction of a meridian andq times in the
direction of a parallel. It is proved in[10] that Legendrian knots of typeM(p, q) with equal
Thurston–Bennequin and Maslov numbers are Legendrian isotopic; moreover, the authors
determine all possible values of these numbers within the topological classM(p, q). Thus,
the problem of Legendrian isotopy classification of Legendrian mirror torus knots has been
completely solved. Still one may wonder whether a (graded) augmentation exists for these
knots, and the answer to this question looks unexpected and gives a push to some amazing
speculations.

Most of the results mentioned in this section are contained in a paper[9].
Thexz-diagram inFig. 9(borrowed from Epstein’s paper[7]) with p cusps on the left and

q cusps on the right (plusp− q cusps in the middle) represents a Legendrian knotL(p, q)

of the topological typeM(p, q) (in Fig. 9, p = 7, q = 4). A simple calculation shows
that

τβ(L(p, q)) = −pq, µ(L(p, q)) = ±(p− q)

(depending on the orientation). A maximal possible value of−pqfor the Bennequin invariant
of typeM(p, q) was first established for oddq in [7] and subsequently for anyq in [10].

Proposition 2.9. If q is even, then the Legendrian knotL(p, q) has a(p − q)-graded
augmentation.
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Fig. 9.

Proof. Let q = 2r. We label the cusps of the left vertical row asa1, . . . , ap (from the top
to the bottom), the cusps of the middle vertical row asbr+1, . . . , bp−r, and the cusps of
the right vertical row asb1, . . . , br, bp−r+1, . . . , bp (as shown inFig. 9). The crossings of
the diagram are arranged in two groups of vertical rows, 2r − 1 rows in each; the rows of
the left group contain, respectively,p− 1, . . . , p− 2r + 1 crossings; the rows of the right
group contain, respectively, 1, . . . ,2r − 1 crossings. We label the crossings of the middle
row in the left group asx1, . . . , xp−r and the crossings of the middle row in the right group
asy1, . . . , yr (from the top to the bottom).

Consider the ruling of the diagram that assigns the cuspbi to the cuspai(i = 1, . . . , p)
and consists of the paths

half of them is shown inFig. 10.
To complete the proof, we notice that all the crossingsxi, yi have the “middle” degree

p− q. �

The fact thatq is even is essential in this proof. Actually, forq odd, the result is the
opposite.

Proposition 2.10 (Epstein and Fuchs[9]). If q is odd, then the Legendrian knotL(p, q)
admits no augmentations(graded or not).
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Fig. 10.

This strange difference between the cases of odd and evenq arises again in a computation
of entirely different nature. Recall that, according toTheorem 1.3, for any Legendrian knot
L,

τβ(Γ) < −f(Γ), (1)

wheref denotes the highest degree of the Kauffman polynomial in the variablez.
A computation (based on the results of[18]) gives the following result.

Proposition 2.11 (Epstein[7] and Epstein and Fuchs[9]).

f(M(p, q)) =
{

pq, if q is even,

pq− p+ q, if q is odd.

Thus, the estimate ofTheorem 1.2is sharp within the topological typeM(p, q) if and
only if q is even.

Let us try to guess when a Legendrian knot possesses an augmentation. It looked plausible
that the right condition for that is the maximality of the Thurston–Bennequin number within
the topological isotopy class; however,Proposition 2.10shows that this condition is at least
not sufficient.Propositions 2.9–2.11together give rise to the following.

Irresponsible conjecture. A (graded?)augmentation for a Legendrian knot L exists if and
only if τβ(L) = −f(L)− 1.

3. Proofs

3.1. Introduction

As it was explained inSection 1.9, an augmentation for the Chekanov–Eliashberg algebra
of a genericxy-diagram of a Legendrian knot may be regarded as a functionε on the set
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of crossings of the diagram with values inZ2 and with an additional property described
below. Letx be a crossing, and letf ∈ Immn(x) (seeSection 1.6for the notation). We
call an immersionf special (with respect toε), if ε(f(ui)) = 1 for i = 1, . . . , n (again,
we use the notation ofSection 1.6). The following definition is equivalent to that given in
Section 1.9.

Definition. A function ε is an augmentation, if for everyx, the number of special immer-
sions in Imm(x) = ∪n≥0Immn(x) is even.

For a fixedε (satisfying the additional property above or not) we call crossingsx with
ε(x) = 1 marked, and, graphically, we will encircle marked crossings inxy-diagrams.

An augmentation is graded (ρ-graded), if all the marked crossings have degree 0 (degree
divisible byρ).

For example, let us try to takeε ≡ 0 (no marked crossings). Thenf ∈ Immn(x) is
special if and only ifn = 0, and the condition above means that the cardinality #(Imm0(x))
of the set Imm0(x) is even for everyx. This is not impossible (it is the case, e.g., for
a figure-eight-shaped diagram with one crossing; I doubt that there are other examples),
but is not common. If #(Imm0(x)) is odd for somex, then we have to mark some (other)
crossings. This suggests a strategy for constructing augmentations: we should first look
at immersions ofP0. Another important thing is that the existence of (graded,ρ-graded)
augmentations is a Legendrian isotopy invariant, so we have the right to modify our diagram
within a Legendrian isotopy class as we wish.

3.2. A modification of a diagram

Consider a genericxy-diagram of a Legendrian knot. We suppose that the values of
the x-coordinates of crossings of this diagram, as well as the cusps and crossings of the
xz-diagram of the same knot are all different. We call these values of thex-coordinate
singular. (The cusps of thexz-diagram correspond to the sites of vertical tangents of the
xy-diagram.)

Suppose that the wholexy-diagram is located within a horizontal stripL < y < M.
We apply to our diagram a number of similar elementary modifications, which we describe
below.

We take a tiny segment [a, b] of the diagram, no point of which has a singularx-coordinate.
Suppose thata is located to the left ofb. Then replace this segment by the curve consist-
ing of five straight segments: froma vertically up, to the levely = M; then a very short
way horizontally to the right; then vertically down, betweena andb, to the levely = L;
then again a short way horizontally to the right; then vertically up to the pointb. (We can
round the corners to make the curve smooth, but it is not really necessary.) The modi-
fication is shown inFig. 11. We will refer to the 5-gonal insert ofFig. 11 as asplash.
Certainly, we can choose the sizes of its horizontal parts in such a way that the total gain
of the area will be zero. Note that thez-coordinate remains almost constant on a splash; in
the xz-diagram, splashes correspond to very low and even more narrow and sharp thorns
directed up.
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Fig. 11.

Now, we add to ourxy-diagram a very large number of disjoint splashes, in such a way
that on each strand they follow each other with a very short step (although considerably
exceeding the width of a splash), and between any two singular values ofx the number
of splashes on each strand considerably exceeds the number of strands. It is convenient
(although not necessary) to arrange splashes in the following order. Slightly to the right of
a singular value ofx, we make a splash at the top strand; then we move slightly to the right
and make a splash on the second top strand, and so on; when we reach the bottom strand,
we jump back to the top strand and begin a new descent.

The result (for a very simplexy-diagram) is shown inFig. 12. Note that in reality the
number of splashes should be much bigger, and thatFig. 12 ignores the crossings of the
xz-diagram. Also note that the shadowed domains ofFig. 12will be relevant inSection 3.4.
Below, we will consider the modified diagram (with splashes), but when we speak of singular
values ofx, we will mean the initial, unmodified diagram.

3.3. The sets Imm

The abundance of crossings of the modified diagram is compensated, at least partially,
by rather a simple structure of immersions considered inSection 1.6. Let x be a crossing
of the diagram, and letf : Pn → R

2 be an immersion from Immn(x). Then the (coun-
terclockwise oriented) closed curvef(Πn) goes along the diagram withn+ 1 left turns at
crossings, and its (inner) left hand side is never exposed to the outer domain of the diagram.

Fig. 12.
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Fig. 13.

This shows that it can never contain a whole splash, since both sides of a splash are exposed
to the outer domain (seeFig. 11). Also, it can never travel very far fromx in the horizontal
direction: at any turn, besides the turn atx, the value of thez-coordinate decreases, and
the turns should be at least as close to each other as splashes on the same strand; but at
any strand (including the splashes) the value of thez-coordinate is almost constant, so if
the value of thex-coordinate ofx is sufficiently far from the singular values, then the to-
tal number of turns cannot exceed the number of strands; the case when thex-coordinate
of x is dangerously close to a singular value, is only slightly different. Actually, the spe-
cial ordering of splashes, described inSection 3.2, makes the allowed immersions still
simpler.

Proposition 3.1.

(1) If n > 3, thenImmn(x) is empty for anyx.
(2) If f ∈ Immn(x), then f is an embedding.

Technically, we will not needProposition 3.1, and we leave its proof to the reader.

3.4. The sets Imm0

Let c be a point of the initial diagram (without splashes) with a vertical tangent. Then, to
the left or to the right ofc, there are two strands issuing fromc; we denote them ass ands′.
Of the splashes ons ands′, take the one closer toc. Let x be the intersection point of this
splash and the other of the strandss ands′; then Imm0(x) contains a well-visible element: an
embedded disk bounded by a segment of the splash and the segments of the strandss ands′.
These disks are shadowed inFig. 12. There are four slightly different possible appearances
of such a disc; they are shown inFig. 13.

Proposition 3.2. The construction above gives all elements ofImm0(x) for all x; in par-
ticular, there is a1-1 correspondence between the setImm0 = ∪xImm0(x) and the set of
cusps of the xz-diagram.

(There may be some splashes on the strands not shown inFig. 13crossing the shadowed
domains.)

Proof. Forf ∈ Imm0(x), the boundary curvef(Π0) of f(P0) contains, but is not restricted
to, a part of a splash. Hence, the crossingx has to be a crossing of a strand and a crossing
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Fig. 14.

on the same strand, which forces the strand to make a U-turn next to the splash. All the
possibilities for that are shown inFig. 13. �

3.5. Construction of an augmentation from a normal ruling

On all further diagrams, we mark the positive angles by small black squares.

3.5.1. Cusps
Of the four diagrams ofFig. 13, we consider only two; the remaining two are absolutely

similar. When we refer toFig. 14, we mean any one of the diagrams presented. Note that
on the left of these diagrams, the strand that is the upper one in thexy-diagram is also the
upper one in thexz-diagram; on the contrary, in the right diagram the strand that is the upper
one in thexy-diagram becomes the lower one in thexz-diagram.

Near a cusp, we have a crossingx with #(Imm0(x)) = 1. To compensate for this, we
observe that Imm1(x) contains an immersion (embedding) ofP1, whose image is shad-
owed inFig. 14: the bottom part or the top part of the splash nearest to the cusp. So, if we
mark the image ofu1 with respect to this immersion (as done inFig. 14), then the num-
ber of special immersions in Imm(x) becomes even (two). But the marked crossing also
belongs to the boundary of the next shadowed disk, which makes the number of special
immersions odd (one) in Imm(y). This forces us to mark one more crossing (next toy), and
so on.

Assume now that thexz-diagram of the Legendrian knot considered is normally ruled.
Then we mark the crossings along the paths emanating from each cusp, as described above,
until we reach the next singular value ofx.

Note that even if there are several pairs of such paths, one over another, only immersions
shown inFig. 14will be special, which is seen from the following. Each marked crossing
involves only strands belonging to one pair, and all the pairs are disjoint. Iff ∈ Immn(x),
thenf(ui), i = 1, . . . , n are crossings between strandssi, si+1 for a certain sequence of
strandss1, . . . , sn+1. Thus, ifn ≥ 2, then the pairs cannot be disjoint, and ifn = 1, then the
immersionf involves two strands from the same pair, and all such immersions are shown
in Fig. 14.

3.5.2. Crossings
Crossings between the strands from different pairs, either in thexy-diagram or in the

xz-diagram, are irrelevant: they do not interfere with the picture inFig. 14.
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Fig. 15.

If a crossing between two paths of the ruling emanating from the same cusp occurs, then
the construction inFig. 14may be continued as shown in the diagram inFig. 15. In this
diagram, all the special immersions are shadowed; all the marked crossings are encircled,
and for any crossingx that is not encircled, the number of special immersions in Imm(x) is
two.

Although we do need this for the proof, the reader may consider thexy-picture corre-
sponding to a crossing of the two paths as above in thexz-diagram (Fig. 16). This occurrence
(forbidden by the definition of a ruling) presents an unsurmountable obstacle for our con-
struction.

The concluding remark ofSection 3.5.1remains valid.

3.5.3. Switches
Four strands, falling into two pairs, are involved in a switch. Two of them, belonging to

the different pairs, form a crossing in thexz-diagram. The position of the other two strands
in thexy-diagram many be chosen arbitrarily (we can make them wavy in thexz-diagram,
the resulting crossings in thexy-diagram do not matter, as was explained above. To avoid
considering many cases, we can assume that these two strands cross each other in the
xy-diagram at the same value of thex-coordinate. In the three cases of normal switches (see
Section 2.2), we can make the relevant part of thexz-diagram look like one of the three
diagrams inFig. 17.

In all three cases the pairs to the left of the switch area ↔ b, c ↔ d, and the pairs to
the right of the switch area ↔ c, b ↔ d. Cases (2) and (3) are absolutely similar. The
xy-diagrams (modified by splashes) corresponding to cases (1) and (3) are shown inFigs. 18
and 19.

Fig. 16.
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Fig. 17.

Fig. 18.

Note that in the cases, both to the left and to the right of the switch, the pairs of the
strands in thexy-diagram corresponding to the pairs of paths of the ruling are the two upper
strands and two bottom strands. The augmentation at a distance from a switch is defined
in accordance withFigs. 14 and 15. To complete the definition of the augmentation in the
proximity of the switch, we need some additional markings, which are shown by arrows on
Fig. 18.

It is worth mentioning that, as one may expect, the corresponding diagrams for abnormal
switches are resistant to the constructions similar to those shown inFigs. 18 and 19.

Fig. 19.
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3.5.4. Gradings
If the ruling is graded orρ-graded, then the augmentation constructed above is also graded

orρ-graded. To demonstrate this, we need to calculate the degrees of the marked crossings,
which is easy to do directly from the definitions.

4. Note added in proof

A notion of a ruling, without the normality condition, was first considered by Eliashberg
in 1987 (Y. Eliashberg, A theorem on the structure of wave fronts, and its applications
in symplectic topology, Funct. Anal. and Appl., 1987, vol. 21). Eliashberg proved the
existence of a ruling for a Legendrially unknotted Legendrian knot. In 2000, Chekanov
and Pushkar, independently of me, introduced, in connection with the Arnold four-cusp
conjecture, a notion equivalent to my graded normal ruling (Y. Chekanov and P. Pushkar, The
combinatorics of Legendrian knot fronts, Arnold conjecture and Legendrian knot invariants
(in Russian), preprint). They proved that the existence of a graded normal ruling, and even the
number of different graded normal rulings, are Legendrian isotopy invariants. The relations
between rulings and augmentations in the Chekanov–Eliashberg algebra has been never
considered by these authors.

Recently, T. Ishkhanov and myself proved that the sufficient condition of Theorems 2.3.1
and 2.5.1 of this paper are also necessary, that is, the existence of a (graded,�-graded)
normal ruling is equivalent to the existence of a (graded,�-graded) augmentation (our work
is currently in preparation).

According to P. Pushkar, the existence of a graded normal ruling is also equivalent to the
existence of a generating family of functions for a Legendrian knot, which makes the latter
equivalent to the existence of an augmentation (Pushkar’s work is also in preparation).
Pushkar has also a construction, from a generating family of functions, of a Morse-like
complex, and it seems to me very likely that this complex is the same as the augmented
Chekanov–Eliashberg algebra.
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