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Abstract

An explicit and easy-to-check condition sufficient for the existence of an augmentation in the
Chekanov—Eliashberg algebra of a Legendrian knot is given in terms of the front diagram. Many new
examples of Legendrian knots distinguishable by the linearized version of the Chekanov-Eliashberg
invariant are provided.
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1. Introduction

In this paper, we consider Legendrian knots in the standard 3-dimensional contact space.
The main goal of this work is to make the new invariant of these knots, recently constructed
by Chekano\3] and Eliashbergg], work in a more effective way.

A working version of the Chekanov—Eliashberg invariant is based on a linearization of
their complex by means of aaugmentatioras defined by Chekan¢8]. If an augmentation
exists, then there arises a chance, almost without computations, to distinguish Legendrian
knots, indistinguishable by more traditional invariants; it should be added, that, so far, it
is not known whether the non-linearized version of this invariant actually distinguishes
Legendrian knots indistinguishable by the linearized version.

Technically, the main result of this work is an easy-to-check sufficient condition on
the existence of an augmentation. As an application, we will construct new examples of
Legendrian non-isotopic Legendrian knots.
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1.1. Knots

A Legendrian knot in the standard 3-dimensional contact space is a smooth, non-
self-intersecting, closed curve R3 with zero restriction of the standard contact form
ydx — dz. A Legendrian isotopy is an isotopy via Legendrian knots. Any topological iso-
topy class of knots contains infinitely many Legendrian isotopy classes of Legendrian knots,
so the Legendrian isotopy classification of Legendrian knots is finer than the topological
isotopy classification of knots.

1.2. Diagrams

There exist two diagrammatic presentations of Legendrian knotszojagrams, or
front diagrams, and byy-diagrams. A generigzprojection of a Legendrian knot is a
closed smooth curve with cusps and transverse double crossings, without other singularities
(in particular, without self-tangencies), and without vertical tangents. X#gojection
determines a Legendrian knot uniquely: the missirgpordinate is the slope of the curve.

A genericxy-projection of a Legendrian knot is a smooth curve with transverse double
crossings, without other singularities, satisfying the following area conditions: (1) the total
area bounded by the curve is 0, (2) each of the two pieces, into which the curve is cut by
any crossing, bounds a non-zero area. Xyaprojection determines a Legendrian knot up

to a translation parallel to theaxis: the difference between theoordinates of two points

of the knot is equal to the integral efdx over the segment of thg~diagram between the
projections of these two points.

It should be noted that the non-local area conditions mgi@iagrams much less con-
venient than front diagrams. In particular, no Reidemeister-like description of admissible
Legendrian moves exists for-diagrams. (For front diagrams such a description is well
known[15]; it can also be found in many works in the bibliogragtg,12,8] etc.)

1.3. Classical invariants

There are two classical integral invariants of Legendrian knots which may distinguish
Legendrian isotopy classes within a topological isotopy class: the Maslov (or rotation)
number and the Thurston—Bennequin nunjlbgrthe firstis defined for oriented Legendrian
knots and changes sign when the orientation is reversed, the second does not depend on
the orientation. These numbers are determined by the (oriented in the case of the Maslov
invariant) Legendrian isotopy type and can be easily determined from eitheqytbe
xz-diagram. In terms of ary-diagram, the Maslov number is the rotation number of the
curve, while the Thurston—Bennequin number is the writhe [$88. For an oriented
xz-diagram, we denote by the number of crossings with the same horizontal directions
of the strands (recall, that vertical tangents are not allowed); bye humber of crossings
with the opposite horizontal directions of the strands¢lifge total number of cusps (the
numbersp, m, ¢ do not depend on the orientation), lbyhe number of upward cusps (i.e.,
the lower strand is directed to the cusp, and the upper strand is directed from the cusp),
and byd the number of downward cusps (thus= u + d). Then the Maslov number is
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2(d — u), and the Thurston-Bennequin numbepis m — 3¢ (se€[1,16,12] etc.). we use
the notationgg andyu for the Thurston—-Bennequin and Maslov numbers below.

1.4. Values of Thurston—Bennequin numbers

It is easy to lower the Thurston—Bennequin number of a Legendrian knot within a topo-
logical isotopy class: just insert a Z-shaped zigzag (composed of two cusps) anyplace.
It is more difficult to raise this number. Actually, at least three upper estimates of the
Thurston—Bennequin number within a topological isotopy class are knownl" ket a
Legendrian knotS be a Seifert surface bounded by (") be the highest degree efin
the HOMFLY polynomial P (e, z) of the knotI”, and f(I") be the highest degree afin
the Kauffman polynomiaF(a, z) of I" (we use the notation ¢i.3]).

Theorem 1.1 (Bennequi1]). t8(I") + |u(I")] < —x(S) (wherey is the Euler charac-
teristic).

Theorem 1.2 (Fuchs and Tabachnikd®2]). t8(I") + |u(I")| < —e(I").

Theorem 1.3 (Fuchs and Tabachnikd®2], Chmutov and Goryunof2] and Tabachnikov
[17]). ©B(U") < —fI).

None of these results gives an exact estimate for efi#@r ) or t8(I") + | (I")]| (see
[7,9,11,12], and no one of them implies any of the others (d€8).

1.5. Sufficiency of classical invariants

For some topological isotopy classes of knots, it is known that any two oriented Leg-
endrian knots of this class having equal Thurston—-Bennequin and Maslov numbers are
oriented Legendrian isotopic. It is proved for topological unknots by Eliashberg and Fraser
[5] and for torus knots by Etnyre and Hond#®].

1.6. Chekanov—Eliashberg invariants

It is not true, however, that topologically isotopic oriented Legendrian knots with equal
Thurston—Bennequin and Maslov numbers are always Legendrian isotopic. A new invari-
ant that may distinguish such knots was constructed in 1997 independently by Chekanov
[3] and Eliashberdd]. (Eliashberg’s construction was based on a contact version of Floer
cohomology, worked out jointly with Hofer. A detailed presentation of this version can be
found, among other things, in a recent paper by Eliashberg g&]glBoth Chekanov and
Eliashberg were able to exhibit an (actually, the same) example of a pair of topologically
isotopic, Legendrian non-isotopic oriented Legendrian knots, which were not distinguish-
able by the previously known invariants. We will not discuss the true origin of this invariant,
but rather recall its construction, as given in the original works of the authors.

Let I" be an oriented Legendrian knot presented by a gergidéagram. At any crossing
X, the two strands form four angles, of which we call two positive and two negative: the
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positive angles are bounded on the right by the upper strand and on the left by the lower
strand. For > 0, we fix a convex planar domai?,, bounded by a piecewise smooth curve

11, of n + 1 vertices, which are denoted in a counterclockwise directionas, .. ., u,;

whenn > 2, P, may be a regulatn 4+ 1)-gon. We consider orientation preserving im-
mersionsf of P, into thexy-plane, which mag1, into the diagram of”" in such a way

that eachy; is mapped onto a crossing. Additionally, we suppose that a neighborhood of
up is mapped onto a positive angle, while the neighborhoods; of. ., u,, are mapped

onto negative angles. For amy the set of isotopy classes of such immersighgith

f(up) = x is denoted as Imgp(x). For anyx, U>? ; Imm,, (x) is finite (because, for any

£ e lmm,(x), h(x) — Y7 1h(f(u;)) > 0, whereh(x) is the absolute value of the differ-
ence of thez-coordinates of the points above the crossipd-et A denote the differential
Z»-algebra, which is defined as the free associative algebra generated by the crossings of the
xy-diagram ofl", whose differentiali : A — A satisfies the product rule and the formula

d(X) = 35203 petmm, ) f1) - flun).

Theorem 1.4 (Chekanov{3] and Eliashberd4]). If H = Kerd/Imd, thendim H is a
Legendrian isotopy invariant af'.

1.7. Gradings

Itis not known whethefheorem 1.4lone actually provides new invariants of Legendrian
isotopy classes. However, Chekanov’s and Eliashberg’s invariant has a graded version,
which is known to be new. In order to introduce a grading, we need to fix an orientation
of I', although the degrees degdefined below, do not depend on this orientation. For
a pointx € I', let @(x) denote the angle (measured counterclockwise) from the positive
direction of thex-axis to thexy-projection of the positive tangent # at x. The function
@ is multivalued;®(x) is defined up to the addition of integral multiples of.2f © = 0O,
then® has a continuous brangh: I — R. If © # 0, then® has a continuous branch
¢ : ' —> R/2r|u|Z. Letx be a crossing of they-diagram ofl" andx1, x2 € I" be the two
points abovex. Let a(x) be the measure of the positive anglexgthus, 0< «(x) < 7).

We also suppose thag lies belowxy, i.e., thez-coordinate ofx1 is less than that of;.

Proposition 1.5 (Chekano\(3] and Eliashberg@]). The numbep(x1) — ¢(x2) — a(X) is
an integral multiple ofr.

Definition. degx) = (1/7)(p(x1) — ¢(x2) — a(X)).

Obviously,

Z, if w=0,
degXx) € .
Lo, it w0,

Using this definition, we introduce &-or a Zy,-grading inA : degxi---X,) =
degxy) + - - - + dedgx,).
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Proposition 1.6 (Chekano\3] and Eliashberg4]). The differentiald : A — A is homo-
geneous of degreel.

Proposition 1.6hows thatthe cohomolodis gradedH = &®,zH, orH = Drezy), Hr-

Theorem 1.7 (Chekano\3] and Eliashberd4]). The dimensiondimH, are Legendrian
isotopy invariants of .

1.8. An alternative approach

Arecentpreprintby N§lL4] contains a new construction offaversion of) the Chekanov—
Eliashberg algebra in terms of the front diagram. The author considers a free associative
Z-algebra generated by the right cusps and all of the crossings of a gerdiagram of
a Legendrian knot. Then, he introduces a differential and proves theorems similar to those
above. In particular, Ng's paper provides a grading of the algebra (modulo twice the rotation
number): the degree of a cusp is defined-ds the degrees of crossings are also important
for this paper and will be described below.

1.9. Augmentations
We will need a coarser invariant, constructed by Chekanov.

Definition. Analgebra homomorphism: A — Z. is calledan augmentatiofif cod = 0.
An augmentatior is calledgraded if e(a) = 0 for any homogeneous € A, such that
dega # 0. An augmentation is calleg-graded for some divisop of 2|u| if e(a) = 0
whenever deg # 0 modp.

Lete : A — Z» be an augmentation. Lé&tg = Kere. Sinced(a) € Kere = Ag for
a €A, thend(ay---ay) = Zleal ceeai—1d(ai)ajr1 - ag € A]E) foranyas, ..., ar € Ao.
Thus,d(A§) C AL. In particular, this gives rise to a malp : Ag/AZ — Ao/A3 for which
d? = 0. This is a “linearization” of the differential.

For a crossing, we setx® = X 4+ ¢(X) € A. Obviously,x® € Kere = Ag. Moreover, the
correspondence — x° defines an isomorphism between the vector spaspanned by
the crossings of they-diagram anaAo/AS. Hence(, can be regarded as a differentialdn
If the augmentationr is graded, thew, is homogeneous of degreel, and the homology
H. = Kerd,/Imd; is Z- or Zy),-graded; in thep-graded caseti, is Z,-graded.

In practice,d, : A — A is calculated as follows. We take the formula ffin) and
replace all the crossingsin the polynomial on the right-hand side of the formulaxy
The resulting polynomial will have zero constant term, sineed = 0. Then, we erase
all monomials of degree 1; the result will be a linear combination of crossings, which is
d.(a).

Let 7 be the set of non-negative integers ditncomputed for all possible augmentations
e . A — Zp, and letly be the set of all Poincaré polynomials & computed for all
possible graded gs-graded augmentations A — Z,.
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Theorem 1.8 (ChekanoV3]). | and Iy, are Legendrian isotopy invariants
1.10. Results

The existence of an augmentation or ofga) (Qraded augmentation, is by itself a Leg-
endrian isotopy invariant of a Legendrian knot. It is not known whether this invariant is
determined by the topology of the knot plus its classical invariants. (Actually, this seems
likely to me, see the discussion Bection 2.8 Still, it is important to know whether a
(graded) augmentation exists for a given knot.

Theorems 2.1 and 2@ovide an explicit and easy-to-check sufficient condition for the
existence of a graded augmentation in terms ofdthdiagram. Using these theorems, we
will be able to construct a large quantity of Legendrian knots, for which an augmentation
(or a graded augmentation) exists.

Let I" and I'” be topologically isotopic oriented Legendrian knots with equal classi-
cal invariants. If the existence of @-) graded augmentation faF and I"’ is estab-
lished, then we have a chance to distinguish them without much work. Suppose, e.g.,
that we know the numbers of crossings of each degree for sgrdegrams ofl" and
I'’. If, say, the diagram of" has at least one crossing of degre@nd no crossings
of degreest & 1, and the diagram of” has no crossings of degrée then the corre-
sponding homologie$/ must be different in dimensiok, and the knotd” and I’ can-
not be Legendrian isotopic. (This simple observation alone is sufficient to distinguish the
knots in the Chekanov—-Eliashberg example.) Some similar possibilities are discussed in
Section 2.7

Proof of Theorems 2.1 and 2.8 contained inSection 3 These proofs are based on
a construction which may be useful for other problems arising in Chekanov—Eliashberg
theory. For a very brief description of the main idea, | can say that for a computation of
Chekanov-Eliashberg invariant it seems preferable to deal widy-diagram with as few
crossing as possible. We do the opposite: we transform a diagram in such a way that it gains
enormously many new crossings, the more, the better. However, in this way we achieve
some taming of the differential.

2. Existence of augmentations
2.1. Rulings
Consider arnxzdiagram of a Legendrian knot. Obviously, the numbers of left and right

cusps are the same.r@iling of the diagram consists, by definition, of

(a) a 1-1 correspondence between left and right cusps;
(b) two paths within the diagram joining each pair of corresponding cusps.

This correspondence and these paths should satisfy the following conditions:

(1) the paths joining a pair of corresponding cusps are disjoint (which makes one of them
upperand another onwer);
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Fig. 1.

(2) any two paths of the ruling can meet only at the crossings of the diagram.
Conditions (1) and (2) imply:
(3) the paths of the ruling cover the diagram;
(4) no path ever passes through a cusp (in other words;-ttw®rdinate is monotonic on
each path of the ruling).

Not everyxzdiagram of a Legendrian knot can be ruled; examples of diagrams without
rulings are given irFig. 1L (Any diagram can be made unrullable by adding a Z-shaped
zigzag or a crossing next to a cusp, formed from the two strands of the cusp.) A diagram
can have more than one ruling, e.g., the diagraffign 2 has at least four different rulings.

In order to visualize a ruling one can shadow the domains between the paths joining
the same pair of cusps; it should be taken into account, however, that these domains may
overlap.

2.2. Normal rulings

From now on, we consider onkz-diagrams which satisfy the following additiorgener-
icity condition: no two crossings or cusps have the sarneordinate.

Consider a ruled (generijdzdiagram. Leta be a crossing. Then precisely two paths
of the ruling pass through; let them bep; and p». We say that: is aswitch if p; and
p2 exchange strands at in other wordsa is a switch, if, in some neighborhood of
excludinga, one of the pathg1, p2, say p1, goes above the other one. Singgand p;
share a crossing, they cannot join the same pair of cusps (see Condition (%)) anelg,
be the paths of the ruling that join the same pairs of cusps as, respegtivalyd p,. Since

Fig. 2.
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Fig. 3.

our diagram is generic, there are six possible arrangements of thezpaths g1, g2 in a
neighborhood of the vertical line passing througliseeFig. 3.
In cases (1)—(3), we call the switalermal in cases (4)—(6), we call the switebnormal
A ruling is called normal, if all its switches are normal.

2.3. Existence of augmentations

Theorem 2.1. If the xz-diagram of a Legendrian knot admits a normal ruling, then this
Legendrian knot has an augmentation

See the proof irsection 3
2.4. Rulings and gradings

For a crossing of anxzdiagram, consider a path along the diagram (without switching
strands at crossings) fromback toa, starting along the strand with the bigger slope (in
any direction); there are two such paths. Weandu be the numbers of downward and
upward cusps on our paths. The residue u mod 2|, whereu is the Maslov number of
the knot, does not depend on the choice of the path; we call this residdedheeof a.
(This definition coincides with that if14], see 1.8.)

A ruling is called graded, if all the switch crossings have degree 0. It is callg@dded,
if the degrees of the switch crossings are divisibleb¥hese properties of a ruling do not
depend on the choice of orientation.

2.5. Existence of graded augmentations

Theorem 2.2. Ifthe xz-diagram of a Legendrian knot admits a gra@do-graded normal
ruling, then this Legendrian knot has a grad@at o-graded augmentation

See the proof irBection 3
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Fig. 4.

2.6. Example 1: doubling of a Legendrian knot

The following construction was shown to me by Yasha Eliashberg in 1997, in connection
with the Chekanov—Eliashberg invariant.

2.6.1. Construction. Thurston—-Bennequin and Maslov humbers

Take thexzdiagram of an arbitrary Legendrian knbBtand shift it slightly down. Then
replace a small fragment of a pair of parallel strands by a “lock”, as showigir. The
resulting Legendrian knot will be denoted Bg,1. A slightly more general construction
uses, instead of a lock, a more complicated insert with 2/ 4+ 2 cusps, as shown Fig. 5
herek and! are arbitrary positive numbers. (This insert contains a lock.)

The resulting Legendrian knot is denotediagi(k, 1). Obviously,I4p (0, 0) = I'yp;, and
if k£ and! are both even, thefiy,(k, /) can be described d$;,, for somel™. Also note that
Typi(k, 1) and Igpi(k’, I') are topologically isotopic if and only ¥+ 1 = k" +I'.

These constructions are illustratedy. 6, where the standard Legendrian trefoil (shown
in Fig. 2) plays the role of".

Proposition 2.3.

+1, if k+liseven

w(Igpi(kh) =0 always Bk, 1) = 3 if k+lisodd

In particular, for anyrI”,
wu(Iap) = 0, B(Iap) = +1.
Proof. Direct computation. O

2.6.2. Degrees of crossings in the xz-diagram
In thexzdiagram oflyy (%, ), we will distinguish three types of crossings:

(1) two crossings within the lock;
(2) four crossings originating from each crossing’of

k{ }z

Fig. 5.
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Fig. 6.

(3) the remaining crossings, one near each cusp aehd Z + 2/ near the lock (but outside
the lock).

Proposition 2.4. All of the crossings of typg) have degre®. The degrees of crossings of
type(2)do notdepend on k or I. Each crossing of tybghas degree equal th (p (D) +k—1).
(We orientI” in such a way that the k cups marked in Figprecede the site of the lock,
while the | cusps succeed this sjte

Proof. Again, this is obvious. Note that the degrees of the four crossings near a cross-
inga of I"arer — 1, r,r,r + 1, wherer is the integral degree af calculated according

to the procedure described 8ection 2.4 using the path avoiding the site of the lock.

In particular, the absolute values of these degrees can never exceed the total number of
crossings of”, or even the maximum of the numbers of upward and downward cusps plus
one. O

2.6.3. Degrees of crossings in the xy-diagram
Thexy-diagram of the knof yp(k, [) consists of two identical copies of thg-diagram
of I (we should slightly perturb one of these copies to make the diagram generic) with the
insert shown irFig. 7 (compare witH3] or [8]). The following proposition will be referred
to in Section 2.{we will be able to avoid it if we use the result [df4]).

Proposition 2.5. The degrees of the crossings a of Hare +-(u (I + k — 1), the degrees
of the crossings b are all equal th the degrees of the crossings c are all equaltthe
degrees of the crossings outside Hglo not depend on k or |

Proof. This is obvious from the diagram. Note that outskdg. 7, there will be two kinds
of crossings: four crossings near each crossing okytdiagram ofl” and some amount of
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accidental crossings between the two copies of this diagram. The degrees of the accidental
crossings are 0 or 1 (there is a path from such a crossing back to itself that goes to the lock

and then back along almost the same track; whether the degree is 0 or 1, depends on the
location of the positive angle). The degrees of crossings near a crossihgrefthe same

as that of the crossing df, maybe plus or minus one. O

2.6.4. Existence of augmentation

Theorem 2.6. For any Ik, [, the Legendrian knofyp(k, [) possesses a graded augmen-
tation.

Proof. According toTheorem 2.2it is sufficient to find a graded normal ruling for the
xz-diagram ofIyp|(k, ). Such a ruling is presented Iig. 8 Remark: the two cusps of the
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lock correspond not to each other, but rather to the two nearest cusps to the left and to the
right of the lock. We choose this correspondence to avoid switches at the crossings within
the lock (because they have non-zero degrees). In our construction, all the switches occur
at a crossing of type (3), all of which have zero degf®position 2.4 Also note that all

the switches of this ruling belong to type (1)flef. 3 O

2.7. Distinguishing Legendrian knots

Let Iy and I be two Legendrian knots. Suppose that (1) they are topologically isotopic,
(2) they have equal Thurston—Bennequin and Maslov numbers, (3) they have graded (or
p-graded) augmentations. Accordinglitbeorem 1.8if I'; andI» are Legendrian isotopic,
then for any graded augmentation/af, there exists a graded augmentatiodpsuch that
the (graded) homologies of the linearized Chekanov-Eliashberg complexes are the same.
Sometimes, we can use this to distinguishand I> without knowing the differential in
these complexes. Indeed, tetbe the number of crossings of degrda thexy-diagram of
I1, and letd, be the similar number fof,. Then the corresponding linearized complexes
are

C={--—>C1—->Co—>C1—>--+}, D={--—->D_1—>Dg—> D1— -}

with dimC, = ¢,, dim D, = d,, (where dim is the dimension ov&r). As it was noted

in 1.10, the equality of homologie$/(C) = H(D), is impossible, say, if, for somk,

cr # 0, ck—1 = ckr1 = dr = 0 (which is, actually, sufficient fofheorem 2.8 More
generally, the equalityd(C) = H(D) implies, at least in theZ-graded case, a chain

of Morse-like inequalities, each of which becomes a tool for distinguishing Legendrian
knots.

Proposition 2.7. Let C and D beéZ-graded and letc, = d, = Oforr < m. Fork > m, let
ek =Cm — Cmt1l — Cmy2+ - E ck, fk =dm — dpy1 — dpy2+ - - £di. Then

em > fm+l,  em+1 = fm42, €m+2> fm+3, ...

fm = em+1, fm+l < eém+2, fm+2 = €m+3, -
The proof has been well known for at least 75 years.

Theorem 2.8. For any Legendrian knal', there exists an integer N with the following prop-
erty. If for some integerk, [, k', I, the Legendrian knotByp (k, 1), I'ypi(k'l’) are Legendrian
isotopic, andk —I| > N, theneithek = k', I =1, ork =1 — pu(D),l = k' + pu(D).

The proof is based not oRroposition 2.7 but rather on the trivial remarks before it.
Since our knots are Legendrian isotopic, they are also topologically isotopic, and hence
k+1 =k +1 (see the remarkiBection 2.6.1. According toTheorem 2.6both knots have
graded augmentations. The linearized complexiigi(k, [) has non-zero components of
degreest(u(IN+k—1), and, if N is big enough, at least one of these components is isolated
(the two neighboring components are trivial). Hence, the compleXgg¢k’, ') should also
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have a component of this degree. This is possible onlyf i) + k — 1 = +(u(N) +1' = 1),
which, in combination wittk + [ = k' + I, implies the statement of the theorem.

Remarks.

1. Since for anym, all Legendrian knotdypi(k, /) with k + [ = m are topologically
isotopic and have the same classical invariantgorem 2.8roduces a lot of exam-
ples of topologically isotopic Legendrian knots, not distinguishable by the classical
invariants.

2. The simplest of these knots, corresponding teith the lens-likexzdiagram (two cusps
and no crossings) arnid+ [ = 4, is Eliashberg’s and Chekanov’s initial example. The
same example with arbitrakyand! was considered in the later version[8f (see also
[80).

3. We do not discuss here how bij should be (and whether it is needed at all). From
the remarks aftePropositions 2.4 and 2.1 is not hard to deduce that ary greater
than both the number of downward cusps and the number of upwards cusps (in the
xz-diagram) will work. A little additional work allows us to replace this “greater than”
by “greater than or equal to”.

4. Theorem 2.2and Proposition 2.7can probably be used for constructing many more
examples.

2.8. Example 2: mirror torus knots. A conjecture

Let p > ¢, where GCDp, g) = 1, and letM(p, ¢q) be the topological isotopy class of
the mirror torus knot that windg times in the direction of a meridian agdimes in the
direction of a parallel. It is proved i[f10] that Legendrian knots of typd (p, ¢) with equal
Thurston—Bennequin and Maslov humbers are Legendrian isotopic; moreover, the authors
determine all possible values of these numbers within the topologicalgssy). Thus,
the problem of Legendrian isotopy classification of Legendrian mirror torus knots has been
completely solved. Still one may wonder whether a (graded) augmentation exists for these
knots, and the answer to this question looks unexpected and gives a push to some amazing
speculations.

Most of the results mentioned in this section are contained in a fj@per

Thexzdiagram inFig. 9(borrowed from Epstein’s papgf]) with p cusps on the leftand
g cusps on the right (plus — g cusps in the middle) represents a Legendrian Kr@t, ¢)
of the topological typeM(p, ¢) (in Fig. 9, p = 7,9 = 4). A simple calculation shows
that

B(L(p, q)) = —pg, wlL(p, ) ==x(p—q)

(depending on the orientation). A maximal possible valuedfor the Bennequin invariant
of type M(p, q) was first established for odgin [7] and subsequently for aryin [10].

Proposition 2.9. If g is even, then the Legendrian knbtp, ¢) has a(p — ¢)-graded
augmentation
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Proof. Letq = 2r. We label the cusps of the left vertical rowas . . ., a,, (from the top
to the bottom), the cusps of the middle vertical rowbasy, . .. , b,—,, and the cusps of
the right vertical row a1, ..., by, by_r11, ..., by (as shown irFig. 9). The crossings of
the diagram are arranged in two groups of vertical rows:2 rows in each; the rows of
the left group contain, respectively,— 1, ..., p — 2r + 1 crossings; the rows of the right
group contain, respectively, 1. ., 2r — 1 crossings. We label the crossings of the middle
row in the left group asy, .. ., x,— and the crossings of the middle row in the right group
asy, ..., yr (from the top to the bottom).

Consider the ruling of the diagram that assigns the éus$p the cuspy;(i = 1, ..., p)
and consists of the paths

ai{ z; " }b, 7:=1,...,1‘,

—Ti— .
ag{ T }b,- i=r+1,...,p—r,
Ti

ai{——zs—r—yi—(z’—r)——'}bi 1=p—-r+1,...,p;

half of them is shown irrig. 10
To complete the proof, we notice that all the crossings; have the “middle” degree
p—q. O

The fact thaty is even is essential in this proof. Actually, fgerodd, the result is the
opposite.

Proposition 2.10 (Epstein and Fuch@]). If g is odd, then the Legendrian kndi(p, ¢)
admits no augmentatior{graded or no}.
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Fig. 10.

This strange difference between the cases of odd andjeséses again in a computation
of entirely different nature. Recall that, accordingiteeorem 1.3for any Legendrian knot
Ll

where f denotes the highest degree of the Kauffman polynomial in the variable
A computation (based on the resultgd8]) gives the following result.

Proposition 2.11 (Epstein[7] and Epstein and Fuclig]).

pa, if giseven
M =
fM(p, 9)) pq—p—+gq, if gisodd

Thus, the estimate dfheorem 1.4s sharp within the topological typ&(p, ¢) if and
only if g is even.

Letustry to guess when a Legendrian knot possesses an augmentation. It looked plausible
that the right condition for that is the maximality of the Thurston—Bennequin number within
the topological isotopy class; howevEBroposition 2.18hows that this condition is at least
not sufficientPropositions 2.9-2.1tbgether give rise to the following.

Irresponsible conjecture. A (graded)augmentation for a Legendrian knot L exists if and
only ift8(L) = — f(L) — 1.

3. Proofs
3.1. Introduction

As itwas explained isection 1.9an augmentation for the Chekanov—Eliashberg algebra
of a genericxy-diagram of a Legendrian knot may be regarded as a funetimmthe set
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of crossings of the diagram with valuesZ» and with an additional property described
below. Letx be a crossing, and let € Imm, (x) (seeSection 1.6for the notation). We
call an immersionf special (with respect te), if e(f(u;)) = 1fori = 1,...,n (again,
we use the notation dection 1.%. The following definition is equivalent to that given in
Section 1.9

Definition. A function ¢ is an augmentation, if for every, the number of special immer-
sions in Immx) = U,>olmm,(X) is even.

For a fixede (satisfying the additional property above or not) we call crossingsth
e(x) = 1 marked and, graphically, we will encircle marked crossingsydiagrams.

An augmentation is gradeg-{graded), if all the marked crossings have degree 0 (degree
divisible by p).

For example, let us try to take = O (no marked crossings). Thef € Imm, (x) is
special if and only il = 0, and the condition above means that the cardinality#o(x))
of the set Imng(x) is even for everyx. This is not impossible (it is the case, e.g., for
a figure-eight-shaped diagram with one crossing; | doubt that there are other examples),
but is not common. If #mmg(x)) is odd for somex, then we have to mark some (other)
crossings. This suggests a strategy for constructing augmentations: we should first look
at immersions ofPy. Another important thing is that the existence of (gradedraded)
augmentations is a Legendrian isotopy invariant, so we have the right to modify our diagram
within a Legendrian isotopy class as we wish.

3.2. A modification of a diagram

Consider a generigy-diagram of a Legendrian knot. We suppose that the values of
the x-coordinates of crossings of this diagram, as well as the cusps and crossings of the
xz-diagram of the same knot are all different. We call these values ok-t@ordinate
singular. (The cusps of thexdiagram correspond to the sites of vertical tangents of the
xy-diagram.)

Suppose that the whobey-diagram is located within a horizontal strip < y < M.

We apply to our diagram a number of similar elementary modifications, which we describe
below.

We take a tiny segment | b] of the diagram, no point of which has a singutacoordinate.
Suppose that is located to the left ob. Then replace this segment by the curve consist-
ing of five straight segments: fromvertically up, to the leveh = M; then a very short
way horizontally to the right; then vertically down, betweeandb, to the levely = L;
then again a short way horizontally to the right; then vertically up to the goifWe can
round the corners to make the curve smooth, but it is not really necessary.) The modi-
fication is shown inFig. 11 We will refer to the 5-gonal insert dfig. 11 as asplash
Certainly, we can choose the sizes of its horizontal parts in such a way that the total gain
of the area will be zero. Note that thecoordinate remains almost constant on a splash; in
the xzdiagram, splashes correspond to very low and even more narrow and sharp thorns
directed up.
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y=M

y=1L

Fig. 11.

Now, we add to ouxy-diagram a very large number of disjoint splashes, in such a way
that on each strand they follow each other with a very short step (although considerably
exceeding the width of a splash), and between any two singular valuethef number
of splashes on each strand considerably exceeds the number of strands. It is convenient
(although not necessary) to arrange splashes in the following order. Slightly to the right of
a singular value of, we make a splash at the top strand; then we move slightly to the right
and make a splash on the second top strand, and so on; when we reach the bottom strand,
we jump back to the top strand and begin a new descent.

The result (for a very simplgy-diagram) is shown ifrig. 12 Note that in reality the
number of splashes should be much bigger, andRitat12ignores the crossings of the
xz-diagram. Also note that the shadowed domainsigf 12will be relevant inSection 3.4
Below, we will consider the modified diagram (with splashes), but when we speak of singular
values ofx, we will mean the initial, unmodified diagram.

3.3. The sets Imm

The abundance of crossings of the modified diagram is compensated, at least partially,
by rather a simple structure of immersions considere8ention 1.6Let x be a crossing
of the diagram, and lef : P, — R? be an immersion from Imgtx). Then the (coun-
terclockwise oriented) closed cury€lT,) goes along the diagram with+ 1 left turns at
crossings, and its (inner) left hand side is never exposed to the outer domain of the diagram.

JJ 1 |
[T

\/
i

| De—
| ——
—

i L}
| S—

[

C

—

Fig. 12.
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€€ pp

Fig. 13.

This shows that it can never contain a whole splash, since both sides of a splash are exposed
to the outer domain (sd€g. 11). Also, it can never travel very far fromin the horizontal
direction: at any turn, besides the turnxatthe value of the;-coordinate decreases, and

the turns should be at least as close to each other as splashes on the same strand; but at
any strand (including the splashes) the value ofztlv@ordinate is almost constant, so if

the value of thec-coordinate of is sufficiently far from the singular values, then the to-

tal number of turns cannot exceed the number of strands; the case whendbedinate

of x is dangerously close to a singular value, is only slightly different. Actually, the spe-

cial ordering of splashes, described3ection 3.2 makes the allowed immersions still
simpler.

Proposition 3.1.

(1) If n > 3,thenlmm,,(x) is empty for any.
(2) If f € Imm,(x), then fis an embedding

Technically, we will not nee®roposition 3.1and we leave its proof to the reader.

3.4. The sets Imgn

Letc be a point of the initial diagram (without splashes) with a vertical tangent. Then, to
the left or to the right o€, there are two strands issuing frarmwe denote them asands’.
Of the splashes onands’, take the one closer i Let x be the intersection point of this
splash and the other of the strar@sds’; then Imny(x) contains a well-visible element: an
embedded disk bounded by a segment of the splash and the segments of the simdsds
These disks are shadowedriy. 12 There are four slightly different possible appearances
of such a disc; they are shownhig. 13

Proposition 3.2. The construction above gives all elementsnafng(x) for all x; in par-
ticular, there is al-1 correspondence between the betng = UxImmg(X) and the set of
cusps of the xz-diagram

(There may be some splashes on the strands not shawig.ii3crossing the shadowed
domains.)

Proof. For f € Immg(x), the boundary curve(ITp) of f(Py) contains, butis not restricted
to, a part of a splash. Hence, the crossirftas to be a crossing of a strand and a crossing
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Fig. 14.

on the same strand, which forces the strand to make a U-turn next to the splash. All the
possibilities for that are shown Irig. 13 O

3.5. Construction of an augmentation from a normal ruling

On all further diagrams, we mark the positive angles by small black squares.

3.5.1. Cusps

Of the four diagrams dfig. 13 we consider only two; the remaining two are absolutely
similar. When we refer t&-ig. 14 we mean any one of the diagrams presented. Note that
on the left of these diagrams, the strand that is the upper one kytti@agram is also the
upper one in thezdiagram; on the contrary, in the right diagram the strand that is the upper
one in thexy-diagram becomes the lower one in tteediagram.

Near a cusp, we have a crossixgvith #(Immg(x)) = 1. To compensate for this, we
observe that Imm(x) contains an immersion (embedding) Bf, whose image is shad-
owed inFig. 14 the bottom part or the top part of the splash nearest to the cusp. So, if we
mark the image ofi1 with respect to this immersion (as doneRiy. 14, then the num-
ber of special immersions in Imfr) becomes even (two). But the marked crossing also
belongs to the boundary of the next shadowed disk, which makes the number of special
immersions odd (one) in Im@y). This forces us to mark one more crossing (nexft@and
so on.

Assume now that thezdiagram of the Legendrian knot considered is normally ruled.
Then we mark the crossings along the paths emanating from each cusp, as described above,
until we reach the next singular valuexaf

Note that even if there are several pairs of such paths, one over another, only immersions
shown inFig. 14will be special, which is seen from the following. Each marked crossing
involves only strands belonging to one pair, and all the pairs are disjoifitelfmm,, (x),
then f(u;),i = 1,...,n are crossings between stranglss; 1 for a certain sequence of
strands, ..., s,11. Thus, ifn > 2, then the pairs cannot be disjoint, and i& 1, then the
immersionf involves two strands from the same pair, and all such immersions are shown
in Fig. 14

3.5.2. Crossings
Crossings between the strands from different pairs, either ixytagram or in the
xz-diagram, are irrelevant: they do not interfere with the picturgign 14
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If a crossing between two paths of the ruling emanating from the same cusp occurs, then
the construction irFig. 14may be continued as shown in the diagrantig. 15 In this
diagram, all the special immersions are shadowed; all the marked crossings are encircled,
and for any crossing that is not encircled, the number of special immersions in (®)ris
two.

Although we do need this for the proof, the reader may considexypecture corre-
sponding to a crossing of the two paths as above ir#fitagram Fig. 16). This occurrence
(forbidden by the definition of a ruling) presents an unsurmountable obstacle for our con-
struction.

The concluding remark dection 3.5.Xemains valid.

3.5.3. Switches

Four strands, falling into two pairs, are involved in a switch. Two of them, belonging to
the different pairs, form a crossing in tkediagram. The position of the other two strands
in thexy-diagram many be chosen arbitrarily (we can make them wavy inzldgagram,
the resulting crossings in thg-diagram do not matter, as was explained above. To avoid
considering many cases, we can assume that these two strands cross each other in the
xy-diagram at the same value of theoordinate. In the three cases of normal switches (see
Section 2.2, we can make the relevant part of tkediagram look like one of the three
diagrams irFig. 17.

In all three cases the pairs to the left of the switchare b, ¢ <> d, and the pairs to
the right of the switch are <> ¢, b <+ d. Cases (2) and (3) are absolutely similar. The
xy-diagrams (modified by splashes) corresponding to cases (1) and (3) are shags k8
and 19

a crossing
on the rz-diagram

{

1 1] A (L

—3
—=
—
—

Fig. 16.
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Note that in the cases, both to the left and to the right of the switch, the pairs of the
strands in theyy-diagram corresponding to the pairs of paths of the ruling are the two upper
strands and two bottom strands. The augmentation at a distance from a switch is defined
in accordance witlirigs. 14 and 15To complete the definition of the augmentation in the
proximity of the switch, we need some additional markings, which are shown by arrows on
Fig. 18

Itis worth mentioning that, as one may expect, the corresponding diagrams for abnormal
switches are resistant to the constructions similar to those shokigsn18 and 19

11400 A0 140114000,
_rJD fL/ /)J A4 JJ r>
RSN A AR

Fig. 19.
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3.5.4. Gradings

Ifthe ruling is graded op-graded, then the augmentation constructed above is also graded
or p-graded. To demonstrate this, we need to calculate the degrees of the marked crossings,
which is easy to do directly from the definitions.

4. Note added in proof

A notion of a ruling, without the normality condition, was first considered by Eliashberg
in 1987 (Y. Eliashberg, A theorem on the structure of wave fronts, and its applications
in symplectic topology, Funct. Anal. and Appl., 1987, vol. 21). Eliashberg proved the
existence of a ruling for a Legendrially unknotted Legendrian knot. In 2000, Chekanov
and Pushkar, independently of me, introduced, in connection with the Arnold four-cusp
conjecture, anotion equivalent to my graded normal ruling (Y. Chekanov and P. Pushkar, The
combinatorics of Legendrian knot fronts, Arnold conjecture and Legendrian knot invariants
(inRussian), preprint). They proved that the existence of a graded normal ruling, and even the
number of different graded normal rulings, are Legendrian isotopy invariants. The relations
between rulings and augmentations in the Chekanov-Eliashberg algebra has been never
considered by these authors.

Recently, T. Ishkhanov and myself proved that the sufficient condition of Theorems 2.3.1
and 2.5.1 of this paper are also necessary, that is, the existence of a (grapladed)
normal ruling is equivalent to the existence of a (gragegraded) augmentation (our work
is currently in preparation).

According to P. Pushkar, the existence of a graded normal ruling is also equivalent to the
existence of a generating family of functions for a Legendrian knot, which makes the latter
equivalent to the existence of an augmentation (Pushkar’'s work is also in preparation).
Pushkar has also a construction, from a generating family of functions, of a Morse-like
complex, and it seems to me very likely that this complex is the same as the augmented
Chekanov—Eliashberg algebra.
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